http://rinkydinkelectronics.com/t_imageconverter565.php
Este é um blog onde anoto dicas técnicas de informática e computação. This is a blog where I write down technical tips on computing. Be aware that some resources used in this blog may use cookies to collect information used by Ads and Google Analytics. I do not monetize from this website, neither require or use personal information.
Sunday, October 4, 2020
Sunday, September 27, 2020
Coin Change Problem
#include <bits/stdc++.h>
using namespace std;
vector<string> split_string(string);
// recursive
int count(vector<int> &coins, int m, int n) {
if (n == 0)
return 1;
if (n < 0)
return 0;
if (m <= 0 && n >= 1)
return 0;
return count(coins, m-1, n) + count(coins, m, n-coins[m-1]);
}
// recursive with memoization
unsigned long dp[51][251];// global array initialized to 0
unsigned long countDP1(vector<int> & coins, int i, int n)
{
if(n == 0)
return 1; //no coins
if(n < 0)
return 0; //no negative money
if(i == coins.size()) //no more options of coins
return 0;
if(dp[i][n]!=0)
return dp[i][n];
//leave it or take it
return dp[i][n] = countDP1(coins,i+1, n) + countDP1(coins,i, n-coins[i]);
}
//loop with 2D memoization space O(n*m) time O(n*m)
unsigned long countDP2(vector<int> &coins, int m, int n )
{
int i, j;
unsigned long table[n + 1][m], x, y;
for (i = 0; i < m; i++)
table[0][i] = 1;
for (i = 1; i < n + 1; i++)
{
for (j = 0; j < m; j++)
{
// Count of solutions including coins[j]
x = (i-coins[j] >= 0) ? table[i - coins[j]][j] : 0;
// Count of solutions excluding coins[j]
y = (j >= 1) ? table[i][j - 1] : 0;
// total count
table[i][j] = x + y;
}
}
return table[n][m - 1];
}
// loop with 1D memoization space O(n) time O(n*m)
unsigned long countDP( vector<int> &coins, int m, int n )
{
unsigned long table[n + 1];
memset(table, 0, sizeof(table));
table[0] = 1;
for(int i=0; i< m; i++)
for(int j=coins[i]; j <= n; j++)
table[j] += table[j-coins[i]];
return table[n];
}
// Complete the ways function below.
unsigned long ways(int n, vector<int> coins) {
return countDP(coins, coins.size(), n);
//return countDP1(coins, 0, n);
}
int main()
{
ofstream fout(getenv("OUTPUT_PATH"));
string nm_temp;
getline(cin, nm_temp);
vector<string> nm = split_string(nm_temp);
int n = stoi(nm[0]);
int m = stoi(nm[1]);
string coins_temp_temp;
getline(cin, coins_temp_temp);
vector<string> coins_temp = split_string(coins_temp_temp);
vector<int> coins(m);
for (int i = 0; i < m; i++) {
int coins_item = stoi(coins_temp[i]);
coins[i] = coins_item;
}
unsigned long res = ways(n, coins);
fout << res << "\n";
fout.close();
return 0;
}
vector<string> split_string(string input_string) {
string::iterator new_end = unique(input_string.begin(), input_string.end(), [] (const char &x, const char &y) {
return x == y and x == ' ';
});
input_string.erase(new_end, input_string.end());
while (input_string[input_string.length() - 1] == ' ') {
input_string.pop_back();
}
vector<string> splits;
char delimiter = ' ';
size_t i = 0;
size_t pos = input_string.find(delimiter);
while (pos != string::npos) {
splits.push_back(input_string.substr(i, pos - i));
i = pos + 1;
pos = input_string.find(delimiter, i);
}
splits.push_back(input_string.substr(i, min(pos, input_string.length()) - i + 1));
return splits;
}
Saturday, June 6, 2020
Struct with defined number of bits for each member in C
unsigned one_bit0:1;
unsigned one_bit1:1;
unsigned two_bits:2;
unsigned four_bits:4;
} BITFIELD;
#include
#include
typedef struct _xpto {
int x;
struct {
int p;
unsigned t:1;
}PT;
char o;
} XPTO;
union {
int result;
char byte[2];
struct {
unsigned b0:1;
unsigned b1:1;
unsigned b2:1;
unsigned b3:1;
unsigned b8:28;
} ST;
} adc;
int main(int argc, char *argv[]) {
XPTO myxpto = { .x=10, .PT = { .p=2, .t=1 }, .o='A'};
printf(".x = %d, .PT { .p = %d, .t = %d }, .o = %c\n",myxpto.x,myxpto.PT.p,myxpto.PT.t,myxpto.o);
adc.byte[0] = 1;
adc.byte[1] = 2;
printf("%x\n", adc.result);
adc.ST.b0 = 0;
printf("%x\n", adc.result);
return 0;
}
Overflow problem - Curious case case of Binary Search
When calculating the mid position in the array
This operation can result in a overflow problem when low + high is too much high
mid = (low + high) / 2;
Replacing by this operation we no longer have the same problem
mid = low + (high - low)/2;
.............................................
Other example of overflow problem
int x = 256;
int y = 256;
unsigned long result;
result = x * 256 * 256 + y*256*256;
the result of the operation will be calculated with size of the highest operand that is integer, and 256 * 256 is already the maximum value of a integer, multiplied by an integer with value 256, the result will not fit in Integer space.
To fix this, we increase the size of the highest operando
result = x * 256 * 256ul + y*256*256ul;
or
result = ((unsigned long)x) * 256 * 256 + ((unsigned long)y)*256*256;